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Abstract. We consider the task of simultaneously predicting the solar
power output for the next day at half-hourly intervals using data from
three related time series: solar, weather and weather forecast. We pro-
pose PSF3, a novel pattern sequence forecasting approach, an extension
of the standard PSF algorithm, which uses all three time series for clus-
tering, pattern sequence extraction and matching. We evaluate its per-
formance on two Australian datasets from different climate zones; the
results show that PSF3 is more accurate than the other PSF methods.
We also investigate if a dynamic meta-learning ensemble combining the
two best methods, PSF3 and a neural network, can further improve the
results. We propose a new weighting strategy for combining the predic-
tions of the ensemble members and compare it with other strategies.
The overall most accurate prediction model is the meta-learning ensem-
ble with the proposed weighting strategy.

Keywords: Solar power forecasting · Pattern sequence similarity
forecasting · Neural networks · Meta-learning ensemble

1 Introduction

Renewable energy production and utilization is rapidly growing, providing
numerous economic, environmental and social benefits. This is encouraged by
government policies, with many countries setting renewable energy targets. Solar
energy produced by photovoltaic (PV) systems is one of the most promising
renewable options. However, unlike traditional energy sources such as gas, oil
and coal, solar energy is variable as it is weather-dependent. This makes its
integration into the electricity grid more difficult and requires forecasting of the
generated solar power, to balance supply and demand during power dispatching
and to ensure the stability and efficient operation of the electricity grid.

Both statistical and machine learning methods have been applied for solar
power forecasting. Linear regression, exponential smoothing and auto-regressive
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moving average are classical statistical methods for modelling time series data
[1]. Previous studies [2,3] have shown that they are promising for solar power
forecasting especially when a single time series is available, but have limitations
for modelling noisy and nonlinear time series [4]. Machine learning methods such
as Neural Networks (NNs) [2,3,5,6], nearest neighbour [2,3] and support vector
regression [7], have also been applied and often shown to provide more accurate
predictions than statistical methods.

Recently, the application of Pattern Sequence-based Forecasting (PSF) [8]
methods has been studied for solar power forecasting [9–11]. PSF assigns a
cluster label to each day and then uses a nearest neighbour approach to find
sequences of days which are similar to the target sequence. One of PSF’s dis-
tinct characteristics is that it predicts all values for the next day simultaneously
(e.g. all half-hourly PV values for the next day), as opposed to predicting them
iteratively, as most of the other methods. While the standard PSF algorithm
uses only one time series (the time series of interest, PV data), two PSF exten-
sions using multiple related time series (weather and weather forecast data)
have been proposed in [9] and evaluated for solar power forecasting. The results
showed that both PSF1 and PSF2 were more accurate than the standard PSF.
However, there is still an opportunity for further improvement, since even the
best performing PSF2 method does not fully utilize all three available data
sources for constructing the pattern sequences. In this paper, we propose PSF3,
a new pattern sequence forecasting algorithm, which utilizes multiple related
time series for clustering, sequence extraction and pattern matching.

In addition, we investigate if a dynamic meta-learning ensemble, combin-
ing PSF3 and NN, can further improve the performance. Motivated by [12],
we employ meta-learners to predict the errors of the ensemble members for the
new day and assign higher weights to the more accurate ones. However, unlike
[12] which combines ensemble members of the same type (NNs) and generates
diversity by using random examples and feature sampling, we create a heteroge-
neous ensemble combining the predictions of PSF3 and NN, to generate natural
diversity, and we also utilize data from multiple data sources (PV, weather and
weather forecast) not only PV data. In addition, we propose a new weighting
strategy, which increases the difference in contribution between the most and
least accurate ensemble members, and show the effectiveness of this strategy.

In summary, the contributions of this paper are as follows:

1. We propose PSF3, a novel pattern sequence forecasting approach, which uses
all three related time series (PV, weather and weather forecast) for pattern
sequence extraction, matching and forecasting. We evaluate the performance
of PSF3 on two Australian datasets, from different climate zones, each con-
taining data for two years from three different sources. Our results show that
PSF3 outperformed the other PSF methods.

2. We investigate if a dynamic meta-learning ensemble (MLE), combining PSF3
and NN, can further improve the results. We propose a new log weight-
ing strategy for combining the ensemble member predictions and show its
effectiveness compared to linear and softmax strategies. The most accurate
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prediction model was the meta-learning ensemble with the log weighting strat-
egy, outperforming the single methods it combines, all other PSF methods
and a persistence baseline model used for comparison.

2 Task and Data

We consider the task of simultaneously predicting the PV power output for the
next day at half-hourly intervals. Given: (1) a time series of PV power output
up to day d: PV = [PV1, ..., PVd], where PVi is a vector of half-hourly PV
power output for day i, (2) a time series of weather vectors for the same days:
W = [W1, ...,Wd], where Wi is a weather vector for day i, and (3) a weather
forecast vector for the next day d+1: WFd+1, our goal is to forecast PVd+1, the
half-hourly PV power output for day d+1.

2.1 Data Sources and Feature Sets

We collected data from two Australian PV plants located in different climate
zones: humid subtropical (Brisbane) and hot desert (Alice Springs). The two
datasets are referred as the University of Queensland (UQ) and Sanyo, and
contain both PV and weather data. The data sources and extracted features for
each dataset are shown in Table 1 and Table 2 respectively.

Solar PV Data. The PV data for the UQ dataset was collected from a rooftop
PV plant located at the University of Queensland in Brisbane1. The Sanyo
dataset was collected from the Sanyo PV plant in Alice Springs2. Both datasets
contain data for two years - from 1 January 2015 to 31 December 2016 (731
days).

Weather Data. The weather data for the UQ dataset was collected from the
Australian Bureau of Meteorology3. There are three sets of weather features -
W1, W2 and WF, see Table 1 and Table 2.

W1 includes the full set of collected weather features - 14 for the UQ dataset
and 10 for the Sanyo dataset. The 10 features are common for both datasets but
UQ contains four additional features (daily rainfall, daily sunshine hours and
cloudiness at 9 am and 3 pm) which were not available for Sanyo.

W2 is a subset of W1 and includes only 4 features for the UQ dataset and
3 features for the Sanyo dataset. These features are frequently used in weather
forecasts and are available from meteorological bureaus.

The weather forecast feature set WF is obtained by adding 20% Gaussian
noise to the W2 data. This is done since the weather forecasts were not available
retrospectively for previous years. When making predictions for the days from
the test set, the WF set replaces W2 as the weather forecast for these days.

1 https://solar-energy.uq.edu.au/.
2 http://dkasolarcentre.com.au/source/alice-springs/dka-m4-b-phase.
3 https://www.bom.gov.au/climate/data/.

https://solar-energy.uq.edu.au/
http://dkasolarcentre.com.au/source/alice-springs/dka-m4-b-phase
https://www.bom.gov.au/climate/data/
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Table 1. UQ dataset - data sources and feature sets

Data source Feature set Description

PV data PV∈ �731×20 Daily: half-hourly solar power from 7 am to
5 pm

Weather data 1 W1∈ �731×14 (1–6) Daily: min temperature, max tempera-
ture, rainfall, sunshine hours, max wind gust
and average solar irradiance;
(7–14) At 9 am and 3 pm: temperature,
relative humidity, cloudiness and wind speed

Weather data 2 W2∈ �731×4 Daily: min temperature, max temperature,
rainfall and solar irradiance. W2 is a subset
of W1

Weather forecast data WF∈ �731×4 Daily: min temperature, max temperature,
rainfall and average solar irradiance

Table 2. Sanyo dataset - data sources and feature sets

Data source Feature set Description

PV data PV∈ �731×20 Daily: half-hourly solar power from 7 am to
5 pm

Weather data 1 W1∈ �731×10 (1–4) Daily: min temperature, max temper-
ature, max wind gust and average solar irra-
diance;
(5–10) At 9 am and 3 pm: temperature,
relative humidity and wind speed

Weather data 2 W2∈ �731×3 Daily: min temperature, max temperature
and solar irradiance. W2 is a subset of W1

Weather forecast data WF∈ �731×3 Daily: min temperature, max temperature
and average solar irradiance

2.2 Data Pre-processing

The raw PV data was measured at 1-min intervals for the UQ dataset and 5-
min intervals for the Sanyo dataset and was aggregated to 30-min intervals by
taking the average value of every 30-min interval. There was a small percentage
of missing values - for the UQ dataset: 0.82% in the PV power and 0.02% in
the weather data; for the Sanyo dataset: 1.98% in the PV power and 4.85% in
the weather data. These missing values were replaced as in [13] by a nearest
neighbour method, applied firstly to the weather data and then to the PV data.
Both the PV and weather data were normalised between 0 and 1.
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3 Pattern Sequence Forecasting Methods: PSF, PSF1
and PSF2

PSF [8] utilizes a single data source for clustering and sequence matching - the
time series of interest, which is the PV data in our case. It uses k-means to
cluster the days in the training data based on their PV vectors into k1 clusters
with labels C1, ..., Ck1 . To make a prediction for a new day d+1, PSF extracts a
target sequence of w consecutive days, starting from the previous day and going
backwards. This sequence of cluster labels is matched with the previous days to
find the set of equal sequences ES. The final prediction is obtained by averaging
the PV vectors of the post-sequence days for each sequence in ES.

PSF1 [9] is an extension of PSF, which utilizes the W2 data for clustering
and sequence matching. It clusters the training set days based on the W2 data
into k2 clusters with labels C1, ..., Ck2 . To make a prediction for a new day d+1,
PSF1 firstly obtains the cluster label for this day using its WF vector. It then
extracts a target sequence of cluster labels for w consecutive days from day d+1
backwards and including d+1, matches this sequence with the previous days and
finds a set of equal sequences ES. The final prediction is obtained by taking the
average of the PV vectors of the last days for each sequence in ES.

PSF2 [9] is an extension of PSF utilizing two of the related time sequences
for clustering and pattern matching - W1 and W2. It clusters the days from the
training set using W1 (k1 clusters with labels C1, ..., Ck1) and W2 (k2 clusters
with labels K1, ...,Kk2). The prediction for the new day d+1 is computed as
follows. A target sequence of cluster labels for w consecutive days from day d
backwards and including day d is extracted based on W1 and matched to find
the set of equal sequences ES. The cluster label Kx for day d+1 is obtained
based on WF. Then, the cluster label of the post-sequence day for all sequences
in ES is checked and if it is not Kx, these sequences are excluded from ES. The
final prediction for d+1 is formed by taking the average of the post-sequence
days for all sequences in ES.

In summary, in PSF and PSF1 the clustering, sequence extraction and pat-
tern matching are done using only one of the related time series, while PSF2 uses
two of them. The proposed PSF3 algorithm builds upon PSF2, but utilizes all
three related time series (PV, W1 and W2) for clustering, sequence extraction
and pattern matching. We investigate if this approach improves performance.

4 Proposed Methods

4.1 Pattern Sequence Forecasting: PSF3

PSF3 is an extension of PSF, which utilizes all related time series (PV, weather
and weather forecast) in the clustering, pattern extraction and matching phases.

PSF3 firstly employs the k-means algorithm to cluster the days from the
training data separately based on their PV, W1 and W2 vectors. Specifically, it
clusters the days (i) based on the W1 weather data in k1 clusters with labels
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Fig. 1. The proposed PSF3 method

C1, ..., Ck1 , (ii) based on the PV data in k2 clusters with labels D1, ...,Dk2 and
(iii) based on the W2 weather forecast data in k3 clusters with labels K1, ...,Kk3 ,
as shown in Fig. 1. Hence, each day from the training data is assigned three
cluster labels, one for each of the three clusterings.

To make a prediction for a new day d+1 from the test set, PSF3 firstly assigns
cluster labels to the previous days if they were not part of the training set. This
is done by comparing these days with the cluster centroids and assigning them
to the cluster of the closest centroid, for each data source separately. Then, the
prediction for the new day d+1 is computed using the following steps:

1. A target sequence of w consecutive days from day d backwards, including day
d, is extracted based on the W1 weather data. This sequence consists of the
cluster labels. It is matched with the previous days to find the set of equal
sequences ES.

2. The same process is repeated for the PV data - a target sequence of w con-
secutive days from day d backwards, including day d, is extracted based on
the PV data and matched to find the set of equal sequences ESPV .

3. The sequences included in ES and ESPV are compared, to find a subset for
which both the W1 and PV cluster label sequence matches. The non-matching
sequences are excluded from ES. Only ES is used for further analysis, and
not ESPV .

4. The cluster label Kx for day d+1 is obtained based on the weather forecast
data.

5. The cluster label of the post-sequence day for each sequences in ES is checked
and if it is not Kx, these sequences are excluded from ES.

6. The final prediction of the PV power for day d+1 is obtained by taking the
average of the PV powers of the post-sequence days for all sequences in ES.
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For example, in Fig. 1, the PV power prediction for day d+1 will be the
average of the PV vectors for days 4 and 69. Note that day 85 is not included
in the final prediction - the sequence ending with day 84 matches the target
sequence in terms of both W1 and PV, but the post-sequence days do not match
in terms of W2 - the cluster label of day 85 is K3, while the cluster label of day
d+1 is K2, i.e. the matching condition in step 5 is not satisfied.

The window size w and the number of clusters k1, k2 and k3 are hyperpa-
rameters of the PSF3 algorithm, selected using 12-fold cross-validation with grid
search as described in Sect. 5.

4.2 Meta-Learning Ensemble: MLE

We also investigate if a dynamic meta-learning ensemble can further improve the
performance of PSF3. The motivation behind dynamic ensembles is that the dif-
ferent ensemble members have different areas of expertise and as the time series
changes over time, the accuracy of the ensemble members also changes. By using
a suitable criterion, we can select the most appropriate weighted combination of
ensemble members for the new example.

A meta-learning ensemble (called EN-meta), combining only NNs and
employing random example and random feature sampling, was used in [12],
demonstrating good performance for univariate solar power forecasting (PV data
only). In this paper, we propose to build a heterogeneous ensemble combin-
ing the predictions of the two best single models - PSF3 and NN. PSF3 and
NN are representatives of different machine learning paradigms. Heterogeneous
ensembles have been shown to perform well in various applications [12,14,15],
by providing natural diversity and complementary expertise. Another important
difference with EN-Meta [12] and the other ensemble methods [14,15], is that
we utilize data from different data sources and related time series (PV, weather
and weather forecast), not only univariate data (PV).

The main idea of our Meta-Learning Ensemble (MLE) is to predict the error
of each ensemble member for the new day and based of this error to determine
the contribution of the ensemble member in the final prediction.

Building MLE involves three steps: 1) training ensemble members, 2) training
meta-learners, 3) calculating the weights of the ensemble members for the new
day and predicting the new day.

Training Ensemble Members. The first step is training the ensemble mem-
bers, PSF3 and NN, to predict the PV power for the next day. PSF3 performs
clustering separately on the PV, W1 and W2 data and then pattern matching,
see Sect. 4.1. NN also uses all three data sources but directly, without clustering,
to build a prediction model. It constructs training data as follows: the feature
vector consists of the PV and W1 weather data for day d and the weather forecast
data W2 for the next day d+1: [PVd;W1d;W2d+1], and the associated target
output is the PV vector for the next day: PVd+1.
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Training Meta-learners. The second step is training the meta-learners. There
is one meta-learner for each ensemble member and we used NN models as meta-
learners. Each meta-learner takes the same input as above ([PVd;W1d;W2d+1]),
but learns to predict the error of its corresponding ensemble member (PSF3 or
NN) for the next day. We used the Mean Absolute Error (MAE) as an error. For
example, the meta-learner for the NN ensemble member MLNN will have as an
input [PVd;W1d;W2d+1] and as a target output MAEd+1 of the NN ensemble
member. Similarly, the meta-learner of the PSF3 ensemble member MLPSF3 will
take the same input but learn to predict MAEd+1 of the PSF3 ensemble member.
To create a training set for a meta-learner, we first obtain the predictions of its
corresponding ensemble member for all training examples and then calculate the
MAEs, which are the target outputs.

Weight Calculation and Final Prediction. The third step involves calcu-
lating the weights of the ensemble members for the new day by converting the
predicted errors into weights and calculating the final weighted average predic-
tion.

The rationale behind MLE is that different ensemble members have different
areas of expertise and their performance changes over time. It assumes that the
error of an ensemble member could be predicted based on its past performance
and uses this error to weight the contributions of ensemble members when mak-
ing the final prediction - the ensemble members which are predicted to be more
accurate will be given higher weights.

Two weight calculation strategies were investigated in [12]: linear and soft-
max nonlinear. The linear strategy decreases the weight of an ensemble member
linearly as its error increases:

wd+1
i =

1 − ed+1
norm,i

∑S
j=1(1 − ed+1

norm,j)

where wd+1
i is the weight of ensemble member Ei for predicting day d + 1,

ed+1
norm,i is the predicted error of Ei by its corresponding meta-learner, normalized

between 0 and 1, and S is the number of ensemble members.
The nonlinear strategy in [12] computes a softmax function of the negative

of the predicted error:

wd+1
i =

exp(−ed+1
i )

∑S
j=1 exp(−ed+1

j )
= softmax(−ed+1

i )

where ed+1
i is the predicted error of Ei by its corresponding meta-learner and

exp denotes the exponential function.
The use of 1 − ed+1

norm,iand − ed+1
i above is necessary for the inverse rela-

tionship between forecasting error and weight (lower errors resulting in higher
weights and vice versa), and the denominator ensures the weights of all ensemble
members sum to 1.
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We propose a new nonlinear weight calculation strategy, the log weighting,
where the weights are calculated as follows:

wd+1
i =

ln(
ed+1
i

∑S
m=1 ed+1

m

)−1

S∑

j=1

ln(
ed+1
j

∑S
m=1 ed+1

m

)−1

In summary, we take the natural logarithm of the inverse of the ensemble
member error, normalised over all ensemble members. The denominator ensures
that the weights of all ensemble members sum to 1.

Compared to the linear and softmax strategies, the log strategy increases the
difference between the weights of the more accurate and less accurate ensemble
members. Hence, it increases the contribution of the most accurate ensemble
members and decreases the contribution of the less accurate ones in the final
prediction.

5 Experimental Setup

All prediction models were implemented in Python 3.6 using scikit-learn 0.22.1
and Keras 2.3.1 libraries. For both datasets, the PV power and corresponding
weather data were split into two equal subsets: training and validation (the first
year) and test (the second year). Cross-validation with grid search was used for
tuning of the hyperparameters as described below.

Table 3. Hyperparameters for the PSF models

UQ dataset Sanyo dataset

Method Hyperparameters Method Hyperparameters

PSF k1 = 2, w = 2 PSF k1 = 2, w = 1

PSF1 k1 = 2, w = 2 PSF1 k1 = 2, w = 2

PSF2 k1 = 2, k2 = 2, w = 1 PSF2 k1 = 2, k2 = 2, w = 2

PSF3 k1 = 2, k2 = 2, k3 = 2, w = 1 PSF3 k1 = 2, k2 = 2, k3 = 2, w = 1

5.1 Tuning of Hyperparameters

For the PSF models, the first year was used to determine the hyperparameters
(number of clusters k1, k2 and k3, and sequence size w) by using 12-fold cross-
validation with grid search, consistent with the original PSF algorithm [8]. The
grid search for w included values from 1 to 5. The best number of clusters was
selected by varying k1, k2 and k3 from 1 to 10 and evaluating three cluster
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quality indexes (Silhouette, Dunn and Davies-Bouldin) as described in [9]. The
selected best hyperparameters are listed in Table 3.

For the NN models, the tuning of the hyperparameters was done using 5-
fold cross-validation with grid search on the first year data. The training algo-
rithm was the mini-batch gradient descent with Adam optimization. The tun-
able hyperparameters and options considered were: hidden layer size: 1 layer
with 25, 30, 35 and 40 neurons, 2 layers with 25 and 20, 30 and 20, 35 and 25,
40 and 30 neurons; learning rate: 0.0005, 0.001, 0.003, 0.005, 0.01, 0.1 and 0.3;
L2 regularization λ: 0.0005, 0.0008, 0.001 and 0.0015; batch size: 64 and 256,
and fixed number of epochs 900. The activation functions were ReLu for the
hidden layers and linear for the output layer, and the weight initialization mode
was set to normal. The selected hyperparameters for the NN models based on
the cross-validation performance are listed in Table 4. After the best parameters
were selected, a new NN model is built using the whole first year data and then
evaluated on the test set.

For the NN meta-learners, we followed the same procedure as above but
used early stopping instead of the maximum number of epochs. The selected
hyperparameters are also listed in Table 4.

Table 4. Hyperparameters for the NN models

Model Hidden layer
size

Learning
rate

L2 λ Batch
size

Epochs

NN (UQ dataset) [25] 0.0005 0.0015 64 900

NN (Sanyo dataset) [35, 25] 0.001 0.0015 64 900

NN meta-learner (UQ dataset) [25] 0.0015 0.0001 64 505

NN meta-learner (Sanyo dataset) [35] 0.001 0.0015 64 103

5.2 Baseline and Evaluation Measures

As a baseline for comparison, we developed a persistence prediction model Bper.
It simply predicts the PV power output of the previous day as the PV power
output for the next day, i.e. P̂Vd+1 = PVd.

To evaluate the performance on the test set, we used the MAE and the Root
Mean Squared Error (RMSE).

6 Results and Discussion

Table 5 shows the MAE and RMSE results of all models for UQ and Sanyo
datasets. The main results can be summarized as follows:

• The proposed PSF3 is the most accurate PSF method, followed by PSF2,
PSF1 and PSF. This shows the effectiveness of the proposed pattern matching
algorithm, utilising all available data sources.



Solar Power Forecasting Based on Pattern Sequence Similarity 281

Table 5. Accuracy of all models

Method UQ dataset Sanyo dataset

MAE (kW) RMSE (kW) MAE (kW) RMSE (kW)

Bper 124.80 184.29 0.75 1.25

PSF 117.15 149.77 0.77 1.07

PSF1 115.55 147.72 0.70 0.98

PSF2 109.89 141.50 0.69 0.98

PSF3 106.11 138.39 0.65 0.95

NN 81.23 115.76 0.49 0.74

MLE (linear) 81.26 111.47 0.51 0.74

MLE (softmax) 81.09 109.73 0.52 0.76

MLE (log) 78.67 110.74 0.48 0.72

• The accuracy ranking of the other PSF methods (PSF2, PSF1 and PSF) is
consistent with [9], confirming that the extensions PSF1 and PSF2 outper-
formed the standard PSF algorithm.

• From the single models, NN is the most accurate model, outperforming all
PSF models. This finding is also consistent with [9]. Unlike the PSF models,
NN does not require clustering and pattern matching; it uses directly the data
from the three sources to construct a feature vector and build a prediction
model. Compared to the PSF models, however, it requires significantly more
time for training and parameter tuning.

• The overall most accurate prediction model is MLE (log), the proposed meta-
learning ensemble with the log weighting strategy. This shows the benefit of
combining the two best models, NN and PSF3, using meta-learning and the
advantage of using the log weighting strategy.

• All three ensemble models are considerably more accurate than the PSF meth-
ods in all cases but only the ensemble MLE (log) was consistently more accu-
rate than NN on both datasets. This again shows the advantage of using log
weighting strategy to increase the influence of the more accurate ensemble
members, compared to the linear and softmax strategies.

• All models outperform the persistence baseline Bper, except for one case -
PSF on the Sanyo dataset for MAE.

• We further analysed the performance of the best models, PSF3 and NN, by
comparing the characteristics of the days for which they performed well. NN
is better than PSF3 at forecasting days with slightly higher PV power and
temperature on both datasets, and days with higher humidity for the Sanyo
dataset.

7 Conclusions

We considered the task of simultaneously predicting the PV solar power for
the next day at half-hourly intervals using data from three related time series:
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PV, weather and weather forecast. We proposed PSF3, a novel pattern sequence
forecasting approach, an extension of the standard PSF algorithm, which uses
all three time series for clustering, pattern sequence extraction and matching.
We evaluated its performance on two Australian datasets, from different climate
zones (humid subtropical and hot desert), each containing data for two years.
Our results show that PSF3 was more accurate than the other PSF methods. We
also investigated if a dynamic meta-learning ensemble combining the two best
methods, PSF3 and NN, can further improve the results. For this ensemble, we
proposed and evaluated a new log weighting strategy for combining the predic-
tions of the ensemble members and showed that it was more effective than linear
and softmax strategies. The overall most accurate prediction model was the
meta-learning ensemble with the proposed weighting strategy; it outperformed
both PSF3 and NN, the other PSF models and the persistence baseline.
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