
SpringNet: Transformer and Spring DTW
for Time Series Forecasting

Yang Lin1(B), Irena Koprinska1(B), and Mashud Rana2

1 School of Computer Science, University of Sydney, Sydney, NSW, Australia
ylin4015@uni.sydney.edu.au, irena.koprinska@sydney.edu.au

2 Data61, CSIRO, Sydney, Australia
mdmashud.rana@data61.csiro.au

Abstract. In this paper, we present SpringNet, a novel deep learning
approach for time series forecasting, and demonstrate its performance in
a case study for solar power forecasting. SpringNet is based on the Trans-
former architecture but uses a Spring DTW attention layer to consider
the local context of the time series data. Firstly, it captures the local
shape of the time series with Spring DTW attention layers, dealing with
data fluctuations. Secondly, it uses a batch version of the Spring DTW
algorithm for efficient computation on GPU, to facilitate applications to
big time series data. We comprehensively evaluate the performance of
SpringNet on two large solar power data sets, showing that SpringNet
is an effective method, outperforming the state-of-the-art DeepAR and
LogSparse Transformer methods.

Keywords: Time series forecasting · Solar power forecasting ·
Transformer · Dynamic Time Warping · Deep learning · Dynamic
programming

1 Introduction

Time series forecasting is an important task in many domains, e.g. forecasting
stock prices, sales and spending, traffic flow, electricity consumption and gen-
erated solar power. The traditional autoregressive and state-space models fit
each of the related time series independently and require expertise in manually
selecting trend and seasonality which limits their applicability [1].

Recently, deep learning methods have been investigated as an alternative.
Salinas et al. [2] proposed DeepAR, a probabilistic forecasting model based on
sequence-to-sequence Long Short Term Memory (LSTM) neural networks. How-
ever, the vanishing and exploding gradient problem of LSTM makes training dif-
ficult, especially when processing long sequences. The Transformer architecture
[3] has been recently proposed to model sequential data with attention mecha-
nism only, without any recurrent or convolutional layers. Its main advantage is
the ability to access any part of the historical sequence regardless of distance. Li
et al. [1] proposed the LogSparse Transformer, a modification of the Transformer
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, LNCS 12534, pp. 616–628, 2020.
https://doi.org/10.1007/978-3-030-63836-8_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63836-8_51&domain=pdf
https://doi.org/10.1007/978-3-030-63836-8_51

SpringNet: Transformer and Spring DTW for Time Series Forecasting 617

for time series forecasting, aiming to overcome the problem of locality-agnostics
and memory bottleneck by employing convolutional attention layers and sparse
attention mechanism. However, the LogSparse Transformer may have limited
ability to capture the time series shape information because the shape could be
distorted after being projected into latent space with lower dimension after con-
volutions. For example, two series with similar shapes that are shifted or scaled
over the time axis may have completely different results after convolutions.

On the other hand, Dynamic Time Warping (DTW) [4] is a classic trajec-
tory similarity measure that can handle temporal distortions, such as shifting
and scaling in the time axis. It has also been used in sequential modelling tasks,
including time series analysis [5–7]. The main drawback of DTW is its high com-
plexity, due to the non-parallelizable characteristics of dynamic programming,
which limits its applicability. A variation of DTW is the Spring DTW algo-
rithm [8], which identifies subsequences in a data stream, that are similar to a
given template. We propose to use the String DTW algorithm as an attention
mechanism for Transformer architectures.

In this paper, we present a new deep learning approach, SpringNet, for time
series forecasting. SpringNet is based on the Transformer architecture but utilizes
Spring DWT attention layers that measure the similarities of query-key pairs
of sequences. We assume that attending to the shape of time series patterns
directly would be beneficial to achieve accurate prediction. SpringNet is the
first Transformer that attends to the shape of time series patterns directly with
Spring attention layers. We also propose a batch version of the Spring DTW
algorithm for GPU acceleration, by identifying a batch of matched subsequences
concurrently.

The effectiveness of the proposed SpringNet approach is comprehensively
evaluated for solar power forecasting using two big data sets. The results show
that SpringNet outperformed the state-of-the-art deep learning models DeepAR
and LogSparse Transformer and the persistence baseline, especially under ran-
dom fluctuations of data. The batch version of the Spring DWT algorithm in
SpringNet was also found to be significantly faster than the original Spring DWT.

2 Case Study: Solar Power Forecasting

Solar photovoltaic (PV) power is a cost-effective and sustainable electricity
source. However, the power output is highly variable as it depends on the weather
conditions. PV power forecasting is needed to quantify the uncertainty associ-
ated with power generation and ensure the successful integration of PV systems
into the electricity grid. Previous work on solar power forecasting includes statis-
tical methods such as autoregressive integrated moving average [9] and machine
learning methods such as neural networks [10] and support vector regression [11].

618 Y. Lin et al.

2.1 Data Sets

We use two solar power data sets: Sanyo1 and Hanergy.2 They contain solar
power generation data from two PV plants in Alice Springs, Northern Territory,
Australia. The Sanyo dataset contains solar power data from 01/01/2011 to
31/12/2017, and the Hanergy dataset - from 01/01/2011 to 31/12/2016.

We also collected weather data from nearby weather stations. The weather
data includes temperature, humidity, global and diffuse radiation. In addition, we
also prepared weather forecast data based on historical weather data. Specifically,
weather forecasts are formed by adding 20% Gaussian noise to the observed
weather data since we did not have access to weather forecast data. Both solar
power and weather data are aggregated to 30-min intervals by taking the average
, and only the data between 7 am and 5 pm is considered [10]. The missing values
in the raw data (1.25% in Sanyo and 3.24% in Hanergy) are filled using the
multivariate imputation by chained equations algorithm [12]. Both solar power
and weather data are normalized to have zero mean and unit variance.

In addition to solar power and weather data, we also consider the calendar
information as inputs to the prediction models. The calendar information (time
features) we consider include month, hour-of-the-day, minute-of-the-hour [1,2].

2.2 Problem Statement

We use the solar power for day d with associated covariate information for
days d (weather and calendar features) and day d + 1 (weather forecast and
calendar features) to forecast the solar power for the next day d + 1. Specif-
ically, given is a set of N : 1) solar power time series {PVi,1:Tl

}Ni=1, where
PVi,1:Tl

� [PVi,1,PVi,2, ...,PVi,Tl
], Tl is the input sequence length, Tl = 20

(1 day), and PVi,t ∈ � is the ith PV power generated at time t; 2) associated
time-based multi-dimensional covariate vectors {Xi,1:Tl+Th

}Ni=1, where Th = 20
(1 day) denotes the length of forecasting horizon. The covariates for our case
study include: weather {W1i,1:Tl

}Ni=1, weather forecasts {WFi,Tl+1:Tl+Th
}Ni=1

and calendar features {Zi,1:Tl+Th
}Ni=1. Our goal is to predict the PV power for

the the next Th time steps after Tl, i.e. {̂PVi,Tl+1:Tl+Th
}Ni=1.

The overall structure of SpringNet is illustrated in Fig. 1. The model’s input
and output arrangement is the same as that of DeepAR [2] and LogSparse Trans-
former [1]. At each time step, the inputs of the model are the PV values at its
previous time step and the covariates X (weather W1 and calendar Z features)
at the current time step. At the first time step of the encoder, PVi,0 value is
initialized as zero. The decoder uses weather forecasts WF features instead of
weather features W1. The decoder is autoregressive, which takes the observation
at the previous time step ̂PV as an input at the current time step.

1 http://dkasolarcentre.com.au/source/alice-springs/dka-m4-b-phase.
2 http://dkasolarcentre.com.au/source/alice-springs/dka-m16-b-phase.

http://dkasolarcentre.com.au/source/alice-springs/dka-m4-b-phase
http://dkasolarcentre.com.au/source/alice-springs/dka-m16-b-phase

SpringNet: Transformer and Spring DTW for Time Series Forecasting 619

c

PV39,
WF40,Z40

c

T22

PV22

Spring
Attention

Masked
Spring

Attention

Spring
Attention

Add & Norm
Add & Norm

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Add & Norm

PV19,
W120,Z20

Linear

Nx

Nx

Positional
Encoding

Positional
Encoding

PV18,
W119,Z19

PV0,
W11,Z1

PV38,
WF39,Z39

PV20,
WF21,Z21

PV21 PV38 PV39 PV40PV21 PV38 PV39 PV40PV21 PV38 PV39 PV40

Fig. 1. Summary of SpringNet

3 Background

3.1 Transformer

The Transformer [3] is a new architecture which uses only attention mechanism
for processing sequential data. Compared to the widely used sequence models,
it does not use any recurrent or convolutional layers, but keeps the encoder-
decoder design and uses stacked multi-head self-attention and fully connected
layers, which could run in parallel.

Each layer of the encoder contains a multi-head self-attention layer followed
by a feed-forward layer, while that of decoder contains an additional encoder-
decoder attention layer between the self-attention layer and the feed-forward
layer. The multi-head attention uses scaled dot product with the queries Q,
keys K and values V . The queries, keys and values are obtained from pre-
vious layer output for self-attention and encoder output for encoder-decoder
attention. Given input X of the attention layer, the hth query, key and value
matrix can be computed through linear projections with the trainable weights:

620 Y. Lin et al.

WQ
h ,WK

h ∈ �dx×dk and WV
h ∈ �dx×dv as shown in (1), where dk, dv and dx are

the dimensionality of K, V and X. The encoder-decoder attention layer takes the
encoder output to compute keys and values and uses previous decoder output
to compute queries.

Qh = XWQ
h ;Kh = XWK

h ;Vh = XWV
h (1)

3.2 LogSparse Transformer

Li et al. [1] proposed the LogSparse Transformer, an improved version of the
Transformer for time series forecasting. In particular, they addressed two weak-
nesses: 1) locality-agnostics (lack of sensitivity to local context which makes the
model prone to anomalies) and 2) memory bottleneck - quadratic space com-
plexity as the sequence length increases.

The LogSparse Transformer introduces casual convolutions to transform
inputs linearly into queries and keys in the attention layer. The convolution
design allows the model to capture local context with a series of queries and
keys to further improve the accuracy. Another improvement is the LogSparse
attention mechanism, which lets the model attend to part of the past history.
The use of LogSparse attention reduces the memory complexity to O(L(log2L)2),
where L is the sequence length, which is important for overcoming the memory
bottleneck that occurs frequently for long sequences.

3.3 Spring Algorithm

Sakurai et al. [8] proposed the Spring algorithm for finding non-overlapping sub-
sequences in data streams that are similar to a query sequence, using the DTW
distance measure. Compared to the naive DTW subsequence searching method,
which has O(n3m) time complexity (where n is the length of the sequence and m
is the length of the query sequence), the Spring algorithm with star padding and
Subsequence Time Warping Matrix (STWM) is significantly faster and requires
O(m) space and O(m) time per time-tick.

The Spring algorithm has attracted significant interest due to its effectiveness
and efficiency. Cai et al. [7] proposed DTWNet which uses the Spring algorithm
as a feature extractor for time series classification.

4 Proposed Approach: SpringNet

4.1 Motivation and Novelty

The daily pattern in solar power data could vary significantly over time because it
is highly sensitive to weather conditions. For examples, although the overall solar
power pattern repeats everyday (an inverse U shape with a peak in the middle
of the day), fluctuations caused by weather conditions could occur several times
during the day, significantly changing this pattern. The time of occurrence and
the magnitude of these fluctuations vary substantially.

SpringNet: Transformer and Spring DTW for Time Series Forecasting 621

Algorithm 1: SpringNet attention algorithm
input : Q, K ∈ �nbatch×nhead×L×dk ,V ∈ �nbatch×nhead×L×dv , Lsub ∈ Z

+,
F : (�N×Lsub×dk , �N×L×dk ,Z+) → �N×ntop×2, ntop ∈ Z

+

output: O ∈ �nbatch×nhead×L×dv

1 init: Qsub � �L×nbatch×nhead×Lsub×dk ; Ktemp � �L×nbatch×nhead×L×dk ;

Vsub � �nbatch×nhead×ntop×dv ; D � �nbatch×nhead×ntop×1;
N = L × nbatch × nhead;

// Preprocessing

2 for l ← 1 to L do
3 Qsub[l, :, :, :, :] = Q[:, :, l : l + Lsub, :];
4 Ktemp[l] = K;

5 end

6 reshape Qsub to �N×Lsub×dk ;

7 reshape Ktemp to �N×L×dk ;
// Batch Spring DTW function

8 matrix ← F(Qsub, K, ntop);
9 Vsub, D ← V, matrix;

10 O = softmax(D) × Vsub;

The Transformer cannot capture the local context of such time series data
with its canonical self-attention layers [1]. While the LogSparse Transformer is
able to capture local context, it could miss the time series shape information
during convolutions.

On the other hand, DTW was designed to measure time series similarity with
temporal distortions. Motivated by the success of recent works that combine
DTW with deep learning [5–7], we leverage DTW to compute attention scores.

The Spring DTW algorithm for subsequences matching is effective and effi-
cient (compared to the naive DTW) but is not suitable to be implemented on
GPU because it processes one pair of sequences at a time. To the best of our
knowledge, recent applications still use the original version of the Spring algo-
rithm and proceed on a sample-by-sample basis.

Below we present our proposed approach, SpringNet, which assumes that it is
beneficial for forecasting models to capture series shape information, especially
when the repeatable fluctuations occur frequently. SpringNet is a Transformer
architecture that attends to the shape of time series patterns directly by using
the SpringNet attention algorithm. The SpringNet attention algorithm is based
on the Spring subsequence matching algorithm but allows to process a batch of
query-key sequence pairs concurrently and is thus suitable for GPU computation.

4.2 Model Architecture

We adopt the general Transformer architecture but replace the multi-head atten-
tion layer of Transformer or the convolutional attention of LogSparse Trans-
former with our Spring attention layer, as shown in Fig. 1. The SpringNet atten-
tion algorithm is illustrated in Algorithm 1, where Lsub is the query subsequence

622 Y. Lin et al.

O

Batch Spring DTW

Q1 K1 V1 Q2 K2 V2 Q3 K3 V3 QL KL VL

Q K V

Qsub Ktemp

Concatenate

Reshape

Generate Output

X1 X2 X3 XL

matrix

Fig. 2. SpringNet attention mechanism

length, ntop is the number of best-matched subsequences from the keys and F
denotes the batch Spring DTW function as shown in Algorithm 2. Instead of
mapping a piece of subsequence into a query and key like the convolutional
attention, Spring attention transforms single time point into individual query
and key and observes the shape of query and key series pattern. Spring atten-
tion identifies the subsequences of keys that match query series.

In lines 2 to 7 of Algorithm 1, we preprocess the queries and keys by extracting
subsequences from queries, repeating keys and reshaping the tensors as the input
of batch Spring DTW function F . Q[:, :, l : l + Lsub, :] in line 3 indicates the
extraction of a tensor from Q with all elements in the 1st, 2nd and 4th axis and
the elements from the lth to the l+Lsub position in the 3rd axis of Q. F produces
the matrix that stores the DTW distance D of ntop best-matched subsequences
from the key series and their ending indexes. Then, values which indexes are
stored in matrix are extracted as Vsub. Finally, we use DTW distance D and
matched values Vsub to compute the Spring attention output O.

SpringNet: Transformer and Spring DTW for Time Series Forecasting 623

Whenever ntop is less than the number of keys, the Spring attention is sparse.
The ntop controls the number of time steps that are attended to. Thus, the
attention could be sparser and memory usage could be lower with smaller ntop.
Lsub controls the Spring attention locality and SpringNet with short Lsub tends
to capture short-term pattern.

Figure 2 shows the feedforward dataflow of the SpringNet attention mecha-
nism. Similarly to the Transformer, SpringNet extracts queries, keys and values
from individual inputs and concatenates them as tensors. Then, these queries
and keys are reshaped to Qsub and Ktemp (see lines 2 to 7 of Algorithm 1) and
passed to the Batch Spring DTW algorithm (function F). Finally, the values and
matrix computed by the Batch Spring DTW algorithm are used to generate the
attention output O (see lines 9 to 10 of Algorithm 1).

4.3 Batch Spring Attention

We follow the design of the Spring algorithm for subsequence mining but propose
a batch version in Algorithm 2. The batch Spring attention algorithm achieves
the same functionality as the Spring algorithm (see Sect. 3.3). The advantage
of our Spring attention algorithm is the ability to process multiple query-key
pairs concurrently on GPU, in order to speed up the Spring attention layer’s
feedforward speed.

We create multiple matrices and arrays to store temporary variables: 1) Dprev

and Dnow store the previous and current DTW distance, Sprev and Snow store
the previous and current starting position of all samples; the four matrices come
from the STWM; 2) Dis stores the DTW distance of matched subsequences,
Je stores the ending position of matched subsequences; both arrays are used
to update the matrix via function updateMatrix, which is the output of batch
Spring DTW function. The function updateMatrix ensures matrix only keeps
the Dis and Je of ntop best-matched subsequences.

Our Algorithm 2 has two nested loops starting at line 4 and 5 to identify all
subsequences in parallel, while the original Spring DTW algorithm would have
a third outer loop to iterate through all subsequence templates. In each Spring
attention layer, there are nbatch × nhead × L subsequence templates (Qsub). In
lines 5 to 15 of Algorithm 2, we compute the DTW distance and subsequence
starting position of the subsequence point at the jth time step. The candidate
subsequences are identified and saved in lines 16 to 21. Finally, we update the
Dis, Je and STWM to proceed to the next time step in lines 22 to 29.

5 Experimental Setup

All prediction models were implemented using PyTorch 1.5 and CUDA 10.1. For
both data sets, we use the last year as test set, the second last year as validation
set for hyperparameter tuning, and the remaining data (5 years for Sanyo and
4 years for Hanergy) as training set.

624 Y. Lin et al.

Algorithm 2: Batch Spring DTW algorithm
input : Qsub ∈ �N×Lsub×dk , Ktemp ∈ �N×L×dk , ntop ∈ Z

+

output: matrix ∈ �N×ntop×2

1 init: Dprev, Dnow, Sprev, Snow � �N×Lsub ; Je, Dis, check � �N ; k ∈ Z
+;

matrix � �N×ntop×2;
2 Dprev[:, :], Je[:], Dis[:], matrix[:, :, :] = ∞;
3 Dnow[:, :], Sprev[:, :], Snow[:, :] = 0;
4 for j ← 1 to L do

// Update subsequences DTW distance and starting position

5 for i ← 1 to Lsub do
6 if i == 1 then
7 Dnow[:, i] = ||Ktemp[:, j, :] − Qsub[:, i, :]||;
8 Snow[:, i] = j;

9 else
10 Dnow[:, i] = ||Ktemp[:, j, :] − Qsub[:, i, :]||+

min(Dnow[:, i − 1], Dprev[:, i], Dprev[:, i − 1], axis = 2);
11 Distance ← concatenate(Dnow[:, i − 1], Dprev[:, i],

Dprev[:, i − 1]) along the 3rd axis;
12 Start ← concatenate(Snow[:, i − 1], Sprev[:, i],

sprev[:, i − 1]) along the 3rd axis;
13 Snow[:, i] = Start[:, :, argmin(Distance, axis = 3)];

14 end

15 end
// Identify new matched subsequences

16 check[:] = 0;
17 for i ← 1 to Lsub do
18 check[Dnow[:, i] >= Dis[:] ∩ Snow[:, i] > Je[:]]+ = 1;
19 end
20 index = (check == Lsub);

// Store the information of new matched subsequences

21 matrix[index] = updateMatrix(matrix[index], Dis[index], Je[index]);
// Reset for the incomig time point

22 Dis[index] = ∞;
23 index ← duplicate index along the 2nd dimension for Lsub times;
24 Dnow[Snow <= Je ∪ index] = ∞;
25 index = (Dnow[:, Lsub] <= Dis[:]);
26 Dis[index] = Dnow[index, Lsub];
27 Je[index] = j;
28 Dprev = Dnow;
29 Sprev = Snow;

30 end

We use three models for comparison: two state-of-the-art autoregressive deep
learning models (DeepAR and LogSparse Transformer) and a persistence model.
DeepAR [2] is a widely used sequence-to-sequence forecasting model, while the
LogSparse Transformer [1] is a recently proposed variation of the Transformer

SpringNet: Transformer and Spring DTW for Time Series Forecasting 625

architecture for time series forecasting; we denote it as “Transformer” in Tables 1
and 2. The persistence baseline is a typical baseline in forecasting and considers
the PV power output of the previous day as the prediction for the next day.

Table 1. Hyperparameters for all models

Model δ dhid nlayer dk&dv nhead Lsub nbatch

DeepAR (Sanyo) 0 8 3 – – – 256

Transformer (Sanyo) 0.2 12 3 6 3 – 256

SpringNet (Sanyo) 0 24 2 6 3 3 256

DeepAR (Hanergy) 0.2 16 4 – – – 512

Transformer (Hanergy) 0.2 12 3 4 2 – 512

SpringNet (Hanergy) 0 12 2 4 2 3 512

All deep learning models are optimized by mini-batch gradient descent with
the Adam optimizer, with variable learning rate (initial λ = 0.005, decay factor
= 0.5) and maximum number of epochs 100. We used Bayesian optimization for
hyperparameter search with a maximum number of iterations 20.

For all models, the dropout rate δ is chosen from {0, 0.1, 0.2}, the hidden
layer dimension size dhid and number of layers nlayer are chosen from {8, 12, 16,
24, 32} and {2, 3, 4, 5}. For LogSparse Transformer and SpringNet, the query
and value’s dimension size dk&dv and number of heads nhead are chosen from
{4, 6, 8, 12} and {2, 3, 4, 6, 8}. For LogSparse Transformer, we use restart
attention range of 20 and local attention range of 3. For SpringNet, the number
of best-matched subsequences ntop is set to 5 and the subsequence length Lsub

is chosen from {2, 3, 4}.
The selected best hyperparameters for all models are listed in Table 1 and

used for the evaluation on the test set.

6 Results and Discussion

Table 2 shows the Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) of all models for the two data sets. The best result for each metric
and data set is highlighted in bold. On both data sets, all deep learning models
outperform the baseline model. SpringNet is the most accurate model in terms
of MAE on both data sets, followed by LogSparse Transformer and DeepAR.
In terms of RMSE, SpringNet is the best performing model for Sanyo and the
second best for Hanergy. Overall, SpringNet is the best performing model which
shows the effectiveness of the proposed approach which attends to the shape of
the time series patterns directly.

In addition, the Batch Spring DTW algorithm significantly speeds up the
model training. On the same Tesla P100-16GB GPU, the feedforward process

626 Y. Lin et al.

Table 2. Accuracy of all models

Sanyo Hanergy

Model MAE RMSE MAE RMSE

Persistence 0.522 0.985 0.703 1.174

DeepAR 0.276 0.381 0.370 0.505

Transformer 0.267 0.384 0.360 0.478

SpringNet 0.258 0.380 0.358 0.494

of a single Spring DTW layer (Algorithm 2) takes 2.081 s and 2.082 s per batch
on Sanyo and Hanergy set respectively. In comparison, for the original Spring
algorithm, the processing time is 12.057 h and 18.426 h per batch on the Sanyo
and Hanergy data sets correspondingly. The running time of our Spring DTW
layer is relatively stable with respect to the batch size, as long as it does not
exceed the GPU memory constraint, while that of the original Spring algorithm
without parallelism increases as the number of series pairs increases.

(a)

(b)

Fig. 3. Actual vs predicted data: (a) Sanyo dataset and (b) Hanergy dataset

Figure 3 plots the actual and predicted solar power data for two days, for
both data sets. The actual data shows different levels of fluctuations, higher
for Sanyo and lower for Hanergy. We can see that the predictions provided by
SpringNet are the closest to the ground truth. SpringNet also forecasts the data
fluctuations much better than DeepAR and LogSparse Transformer which tend
to produce smooth curves. This shows that SpringNet is able to capture the time
series pattern and deal well with repeated fluctuations.

SpringNet: Transformer and Spring DTW for Time Series Forecasting 627

Hence, based on the results, we conclude that SpringNet is a promising
method for solar power forecasting - it outperforms all models used for com-
parison and is more robust to fluctuations. The attention layer in SpringNet
helps to capture repeatable fluctuation patterns and provide accurate forecasts
especially in the presence of fluctuations.

7 Conclusions

In this paper, we present SpringNet, a new deep learning based approach for time
series forecasting, and demonstrate its performance in a case study for solar PV
power forecasting. SpringNet is based on the LogSparse Transformer architecture
but uses Spring DTW attention layers. We propose the use of Spring attention
to overcome the weakness of LogSparse Transformer to effectively capture the
time series shape information. In addition, we propose the Batch Spring DTW
algorithm to speed up the feedforward operation of the Spring DTW attention
algorithm. SpringNet is a generic time series forecasting approach and can be
used in different domains. We present a case study for solar power forecasting,
using two big data sets from solar plants located in Australia. The results show
that SpringNet outperforms the state-of-the-art deep learning forecasting meth-
ods DeepAR and LogSparse Transformer, and also a persistent baseline used for
comparison. Our experiments suggest that SpringNet can capture shape infor-
mation from trajectories and make robust predictions. In summary, the results
validate our hypothesis that attending to the shape of time series pattern directly
is beneficial. We also found that the Batch Spring attention algorithm was sig-
nificantly faster than the sequential version.

Hence, we conclude thatSpringNet with Batch Spring Attention mechanism
is a promising method for time series forecasting.

References

1. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of Trans-
former on time series forecasting. In: Conference on Neural Information Processing
Systems (NeurIPS) (2019)

2. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic
forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191
(2020)

3. Vaswani, A., et al.: Attention is all you need. In: Conference on Neural Information
Processing Systems (NeurIPS) (2017)

4. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26, 43–49 (1978)

5. Cuturi, M., Blondel, M.: Soft-DTW: a differentiable loss function for time-series.
In: International Conference on Machine Learning (ICML) (2017)

6. Guen, V.L., Thome, N.: Shape and time distortion loss for training deep time
series forecasting models. In: Conference on Neural Information Processing Systems
(NeurIPS) (2019)

628 Y. Lin et al.

7. Cai, X., Xu, T., Yi, J., Huang, J., Rajasekaran, S.: DTWNet: a dynamic time warp-
ing network. In: Conference on Neural Information Processing Systems (NeurIPS)
(2019)

8. Sakurai, Y., Faloutsos, C., Yamamuro, M.: Stream monitoring under the time war-
ping distance. In: International Conference on Data Engineering (ICDE) (2007)

9. Pedro, H.T., Coimbra, C.F.: Assessment of forecasting techniques for solar power
production with no exogenous inputs. Solar Energy 86, 2017–2028 (2012)

10. Lin, Y., Koprinska, I., Rana, M., Troncoso, A.: Pattern sequence neural network
for solar power forecasting. In: International Conference on Neural Information
Processing (ICONIP) (2019)

11. Rana, M., Koprinska, I., Agelidis, V.G.: 2D-interval forecasts for solar power pro-
duction. Solar Energy 122, 191–203 (2015)

12. Azur, M., Stuart, E., Frangakis, C., Leaf, P.: Multiple imputation by chained equa-
tions: what is it and how does it work? Int. J. Methods Psychiatr. Res. 20, 40–49
(2011)

	SpringNet: Transformer and Spring DTW for Time Series Forecasting
	1 Introduction
	2 Case Study: Solar Power Forecasting
	2.1 Data Sets
	2.2 Problem Statement

	3 Background
	3.1 Transformer
	3.2 LogSparse Transformer
	3.3 Spring Algorithm

	4 Proposed Approach: SpringNet
	4.1 Motivation and Novelty
	4.2 Model Architecture
	4.3 Batch Spring Attention

	5 Experimental Setup
	6 Results and Discussion
	7 Conclusions
	References

