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Abstract—Temporal Convolutional Neural Networks (TCNNs)
have been applied for various sequence modelling tasks including
time series forecasting. However, TCNNs may require many
convolutional layers if the input sequence is long and are not
able to provide interpretable results. In this paper, we present
TCAN, a novel deep learning approach that employs attention
mechanism with temporal convolutions for probabilistic forecast-
ing, and demonstrate its performance in a case study for solar
power forecasting. TCAN uses the hierarchical convolutional
structure of TCNN to extract temporal dependencies and then
uses sparse attention to focus on the important timesteps. The
sparse attention layer of TCAN enables an extended receptive
field without requiring a deeper architecture and allows for
interpretability of the forecasting results. An evaluation using
three large solar power data sets demonstrates that TCAN
outperforms several state-of-the-art deep learning forecasting
models including TCNN in terms of accuracy. TCAN requires
less number of convolutional layers than TCNN for an extended
receptive field, is faster to train and is able to visualize the most
important timesteps for the prediction.

Index Terms—time series forecasting, deep learning, temporal
convolutional neural network, sparse attention

I. INTRODUCTION

Time series forecasting is an essential task in many areas,
e.g. in industry - predicting electricity demand, in finance -
predicting stock prices and exchange rate, in retail - predicting
sales, supply and demand, in health - predicting immune
response, disease progression and hospital length of stay.

Statistical methods such as linear regression, ARIMA and
exponential smoothing [1] are well-established and widely
used by industry forecasters. However, they require domain
knowledge for model selection, fit each time series indepen-
dently and are not able to infer shared patterns from related
time series [2], [3].

On the other hand, deep learning methods have been in-
creasingly applied for time series forecasting, showing very
promising results. They are able to learn from raw data with
less domain knowledge and feature engineering, and can ex-
tract complex patterns, including shared patterns, from related
time series. For example, Salinas et al. [4] proposed DeepAR,
a probabilistic forecasting model based on Long Short Term
Memory (LSTM) networks. The Transformer architecture [3]
is a new sequence model that uses only attention mechanism
for data processing, without any recurrent or convolutional
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layers, and can access any part of the historical sequence
regardless of temporal distance. Li et al. [5] proposed the
LogSparse Transformer, which solves the locality-agnostics
and memory bottleneck problems of the Transformer.

Another prominent class of deep learning methods, convolu-
tional neural networks, have also been applied for time series
forecasting. They are attractive due to their ability to represent
repeated patterns in the time series via convolutional filters and
extract useful features from raw data without prior knowledge
or feature engineering [6]—[8].

Temporal Convolutional Neural Networks (TCNNs) [9] are
specifically designed for sequence modeling tasks and have
been applied for different types of data - image, language and
music [9], solar power forecasting [8], retail, electricity and
traffic [10]. The probabilistic TCNNs were proposed in [10].

TCNN is a hierarchical architecture consisting of several
convolutional layers. It uses casual convolutions, dilated con-
volutions and residual connections to enable a larger receptive
field, reduce the unstable gradient problem and boost training
speed [9]. However, when the input sequence is long, TCNN
may need many temporal convolutional layers in order to
have a sufficiently large receptive field that covers the input
sequence. In addition, TCNN is a black-box architecture, not
able to provide interpretable results. Many applications of
time series forecasting involve critical decisions; providing
explanations improves the confidence of decision makers and
is hence highly desirable. In this paper, we present a new
approach to address these issues.

The contributions of our work are as follows:

1) We propose Temporal Convolutional Attention Neural
Network (TCAN), which employs convolutional architec-
ture and attention mechanism. TCAN learns the temporal
dependency via hierarchical convolutional architecture
and generates forecasting results with a sparse attention
layer. The use of sparse attention layer enables TCAN to
access all historical input steps regardless of the sequence
length, to focus on the most important timesteps from the
input sequence and to provide visualization of the results
for interpretability.

2) We evaluate TCAN for time series forecasting on three
real-world solar power data sets (two sets contain mul-
tivariate series and one set contains related series). The



results show that TCAN outperforms the state-of-the-art
deep learning models DeepAR, LogSparse Transformer,
N-BEATS and TCNN, and a persistence baseline. The
attention mappings visualize the important timesteps for
interpretability of the results and demonstrate that ac-
cessing longer previous history is important. Our results
show that TCAN with the sparse attention layer requires
less number of convolutional layers than TCNN for an
extended receptive field and performs better than TCNN
in terms of accuracy and training speed.

II. CASE STUDY: SOLAR POWER FORECASTING

As a case study we consider solar power forecasting: given
an input sequence of previous PV solar power generation data
(e.g. hourly or half-hourly), predict the solar power for the
next time step.

Solar power forecasting is needed for optimal scheduling of
generators and for the integration of solar into the electricity
grid. The penetration of solar energy into the electricity
grid is rapidly increasing but since solar has a variable and
intermittent nature, there is a need for accurate forecasting
in order to to ensure stability and efficient operation of the
electricity grid.

A. Data

We use three publicly available data sets: Sanyo [11],
Hanergy [12] and Solar [13].

Sanyo and Hanergy contain solar power generation data
from two PV plants in Australia - from 1/2011 to 12/2016
(6 years) for Hanergy and and 1/2011 to 12/2017 (7 years)
for Sanyo. Only the data between 7am and 5pm was consid-
ered and it was aggregated at half-hourly intervals. For both
datasets, weather and weather forecast data was also collected
(see [14] for more details) and used as covariates.

Solar contains solar power data from 137 PV plants in
Alabama, USA, from 01/2006 to 08/2006. The Solar data is
aggregated into 1-hour intervals.

Following [5], [14], calendar features were also added ac-
cording to the granularity of the datasets: Sanyo and Hanergy
use month, hour-of-the-day and minute-of-the-hour, and Solar
uses month, hour-of-the-day and age.

All data was normalized to have zero mean and unit
variance.

B. Problem Statement

Given is:

1) aset of NV univariate time series {Y; 1.7, } N | (PV solar in
our case study, N=1 for Sanyo and Hanergy and N=137
for Solar), where Y; 1.1, £ [y, 1, ¥, 90 Yipy)» 11 is the
input sequence length, and y, , € ® is the ith PV power
generated at time ¢;

2) a set of associated time-based multi-dimensional covari-
ate vectors {X; 1.7,+7, }I*,, where T}, is the length of
forecasting horizon. For our case study, the covariates
for the Sanyo and Hanergy datasets include: weather
{W1, 1.1, }¥,, weather forecasts {WF; 7, 1.774+7, 11y

e
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Fig. 1. TCNN architecture

and calendar features {Zi,l:Tl—s-Th}fip while the covari-
ates for the Solar dataset include calendar features only.

Task: Predict {Y; r,41.1,+1, MYV |, the PV power for the
next T} time steps after 7;.

The input of TCAN at step ¢ is the concatenation of y; ;1
and x; ;. TCAN produces the probability distribution of future
values, given the past history:

?(Yir+in+r, | Yirn, Xiun+7,; )
Ti+Th

= H P(Yie | Yina—1, X145 P)
t=T;+1

(1)

where ® denotes the parameters of TCAN.
Note that the subscript ¢ is omitted in the rest of the paper
for simplicity.

III. BACKGROUND

A. Temporal Convolutional Neural Network

Bai et al. [9] proposed a generic architecture of TCNN,
which is informed by CNN architectures for sequential data
such as WaveNet [15] but is specifically designed to be simpler
and to combine autoregressive prediction with a long memory.
TCNN is a hierarchical architecture, consisting of several
convolutional hidden layers with the same size as the input
layer, as shown in Fig. 1. It is designed to process data element
by element.

TCNN utilizes three main techniques: causal convolutions,
dilated convolutions and residual connections.

Causal convolutions. The output at time ¢ is convolved
only with elements from time ¢ or earlier time steps from the
previous layer. This concept has been used in Waibel’s time-
delay network [16] and the WaveNet architecture [15]. Zero
padding is used in hidden layers to ensure that the hidden
layers have the same dimensionality as the input layer to
facilitate the convolutions.

Dilated convolutions. This technique was introduced in
[15], [17] to enable large receptive fields, and consequently
to capture a long memory, which is not possible with causal
convolutions alone as they require a very deep NN.
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The dilated convolutional operator F' on the sequence
element s is defined as:

k—1
F(s) =Y f(i)-weai )
=0
where f : {0,...,k — 1} — R is the convolution filter, x is

the sequential input (concatenation of the solar time series and
covariates for our case study), k is the filter size, and d is the
dilation factor.

The convolution kernel remains the same for all layers but
the dilation factor increases exponentially with the depth of the
network: d; = 2!, where [ is the network level. For example,
as shown in Fig. 1, d; is 1 at the first layer (corresponding
to regular convolutions) and then increases at each layer,
reaching 4 at the last hidden layer. This pyramidal structure
and aggregation mechanism effectively increases the receptive
field of TCNN, allowing to cover a long input sequence.

Residual connections. Residual blocks [18] help to over-
come the gradient vanishing problem in networks with many
layers. The main idea is to add the input z to a block of
stacked layers (a series of transformation F) to the output of
this block by using shortcut connections:

o=o(z+ F(x)) 3)

where o is the activation function.

Fig. 2 illustrates a residual block of TCNN [9]. There are
two branches - the first one transforms the input = through a
series of stacked layers including two dilated causal convolu-
tion layers, while the second one is the shortcut connection
for the input x. However, the original input x and the output
of the residual block F could have different widths, and the
addition cannot be done. This can be rectified by using the
1 x 1 convolution layer on the shortcut branch to ensure the
same widths.

In this work, we implemented an autoregressive TCNN [9].
Given an input sequence with pre-defined size (input window),

it predicts the next value, then adds the predicted value to
the input window and shifts the input window with one step,
makes the next prediction and so on until all values from the
forecasting horizon are predicted.

In summary, compared to recurrent architectures such as
RNN, LSTM and GRU, TCNNs have the advantage of larger
receptive field size, more stable gradients and parallelism [9].
However, although the use of dilated convolutions enables
larger receptive fields, this also requires more temporal convo-
lutional layers to cover long input sequences, which makes the
architecture more complex and slower to train, and may also
lead to overfitting. In this paper we propose TCAN, which
allows to access all input timesteps without increasing the
number of temporal convolutional layers, and preserves the
other advantages of TCNN.

B. Attention Mechanism

The attention mechanism [19] was initially proposed for
sequence-to-sequence (seq2seq) tasks in natural language pro-
cessing but since then has been successfully used in other do-
mains as well. It is applied in an encoder-decoder framework
and allows to automatically identify the parts of the encoder
input sequence that are important for the decoder outputs.

In the seq2seq framework, the encoder and decoder take
the sequential steps as input and generate the hidden state
h, € RP¥dria at each step, where dj,;4 is the hidden layer size.
Soft attention takes as input the encoder hidden states hj.r,
and the decoder hidden state h; at time step ¢, and generates
a context vector ¢; by calculating their dot product:

¢i = hig - hi “4)

Then, the context vector is normalised by the softmax
function to produce attention weights. The weight a; of each
encoder hidden state h; is given by:

— G 5)
j=1 exp(c;)

The weight represents how important the encoder step ¢ is
to the decoder output at step t.

Finally, the attention layer output is computed by the dot
product between the attention weights a;.7, and the encoder
hidden states hi.7,. The weighted output is concatenated with
the decoder hidden state to generate the decoder output.

Intuitively, the attention mechanism helps the decoder to
pay attention to the parts of the historical sequence steps that
are important regardless of the length of input steps and thus
overcomes the limitation of seq2seq framework to encode a
whole sequence into a single fixed-size vector. The use of
attention helps the seq2seq model to have better performance
when processing longer sequences.

However, attention using softmax always results in positive
attention weights for all timesteps, including the irrelevant
steps which can be harmful to long sequences [20], [21].
To overcome this issue, recent studies have proposed sparse
attention mechanisms to learn sparse attention mappings [5],
[20]-[22]. The sparse approach shows advantages over dense



attention on multiple sequential modelling tasks in term of
accuracy and also interpretability of the results as it tends to
generate less scattered attention maps [5].

IV. TEMPORAL CONVOLUTIONAL ATTENTION NEURAL
NETWORKS

A. Motivation and Novelty

TCAN aims to:

1) Enable large receptive fields without increasing the num-
ber of convolutional layers.

2) Focus on the timesteps from the input sequence that are
important for prediction and to ignore the irrelevant ones
to improve accuracy.

3) Provide visualization of the most relevant timesteps to
facilitate understanding and interpretability of the results.

Although TCNN [8]-[10] uses exponentially dilated convo-
Iution to extend the receptive field, if the input sequence is
long, it may need many convolutional layers which increases
the complexity and training time.

Given a TCNN with ny temporal convolutional layers,
convolutional filters of size k and dilation factor d; = 2!,
the effective history of layer | ({I € Z : 0 <1 < np}) that is
used by TCNN to generate predictions is (k — 1) x d; [9].

The number of historical input steps that TCNN could use
to make predictions is thelsum of the effective histories of all
convolutional layers: LZ (k—1) x dj.

It can be shown thalt_too have a receptive field covering an
input sequence with length 7;, TCNN needs at least ny =
[loga( 1&1 + 1)] convolutional layers:

anl
Z(’f—l)XdlZTz
1=0
nr—1
> (k-1 x2' >T
1=0
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T
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In our case study for solar power forecasting, the length of
the input sequence (previous history) is 20 or 24 steps per day,
and we use a small kernel with a filter size of &k = 3 to focus
on the local content [9]. This means that a TCNN with at least
4 convolutional layers (ng = [log2(52% +1)] = 4) is needed
to take into account all input steps. When the size of the input
sequence increases (e.g. due to a different data granularity or
the need to use more previous timesteps), more convolutional
layers will be needed. This increases the complexity of the
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Fig. 3. TCAN architecture

architecture, may lead to overfitting and also increases the
training time.

Below we present our proposed approach, TCAN, which
uses attention mechanism to enable an extended receptive field
without adding more temporal convolutional layers.

The attention mechanism also allows TCNN to focus on the
important input timesteps and ignore the irrelevant ones when
making predictions which may improve accuracy. In addition,
the attention layer is used to provide visualization of the most
relevant timesteps for the prediction of each instance. This
enables interpretability and justification of the results which is
important for real-world time series forecasting applications.

B. Model Architecture

As illustrated in Fig. 3, TCAN consists of three parts: 1)
temporal convolution layers, 2) sparse attention layer and 3)
output layer.

TCAN employs hierarchical convolutional architecture to
encode the input sequence and extract temporal pattern as
latent variables. The latent variables are then used by an
attention mechanism to learn the most relevant features (pre-
vious timesteps) and generate the final prediction. The latent
variables encode information from the whole input window,
enabling large receptive fields without adding more convolu-
tional layers. In addition, the attention mechanism allows to
visualise the most important timestamps for each instance to
facilitate understanding and interpretability of the results.

TCAN uses the benefits of sparse attention mechanism to: 1)
access all previous timesteps without the requirement of a deep
architecture and 2) focus on the important input timesteps and
ignore the irrelevant ones when making predictions, 3) provide
visualization of the most relevant timesteps for the prediction.

Temporal Convolution Layers. Firstlyy, TCAN extracts
the temporal latent factors h;_r,.; via the multiple dilated
temporal convolutional layers (T'C) from the historical data
within the input window T} (y:—7,.¢, Tt—71,:¢) as:

hi—1 = TC(Ye—1y:t, Te—7y:¢) @)

where the extracted latent factors encode all information of
the input sequence within the rolling window.



Sparse Attention Layer. The sparse attention layer takes
the temporal latent factors (ht—1,:t) as input and generates
the attention vector (h;) that is used to make the prediction.
Standard attention scores used in Transformer and RNN ar-
chitectures are computed by the softmax function. However,
softmax never assigns a probability of zero to any previous
timesteps, so it never fully rules out the unimportant parts of
the input sequence [21]. In sequence modelling tasks, includ-
ing solar power forecasting, the future timestep is typically
strongly related to a few historical timesteps and it is desirable
to increase the focus on them. For example, the solar power
at step ¢ is more related to the solar power at the previous
hours on the same day and the same time on the previous day
(step t — T7) rather than the other timesteps. This is supported
by Fig. 4 which shows the partial aurocorrelation plot of the
solar series for all data sets for 30 lags; we can see two strong
linear dependencies: the first is at lag 1 and the second is at
lag 20 for Sanyo and Hanergy and lag 24 for Solar.

Recent studies have developed variations such as sparse
attention which increase the focus on the most relevant input
timesteps. Specifically, we applied a-entmax attention [21],
defined as:

At —Ty:t—1
=a — entmax(h_1,.4-1 - hi ) ®)
=ReLU((a — 1) x (ht—1y:t—1 - hi) — 7'1))1/0471

where 7 is the Lagrange multiplier, 1 is the all-one vector and
« is the hyperparameter. a-entmax maps latent variables into
sparse attention scores a;_7,.;—1 € R':*! base on the dot
product similarity between the historical steps (hi—7,+—1 €
RTixdniay and current step (hy € RL¥9rid),

Note that a-entmax is equivalent to using softmax when
a = 1 and sparsemax when o = 2 [20]. In TCAN we set « to
1.5 for a balance between softmax and sparsemax as in [21].

Then we employ concatenation to combine the information
from the attention context vector ¢; and target hidden state h,
to produce the attention vector h;. The context vector is the
dot product between the attention score and hidden states of
the historical steps and could be considered as the weighted
sum of hidden states h;:

he = [eeohu] = [(af g, 1 - hi—rpu—1) o hu] — (9)

Output Layer. The output layer uses the attention vectors
to make the final predictions. In this work, we consider data
is distributed in Gaussian distribution, which is commonly
used in real-world time series modelling [4]. We transfer the
attention vector as the forecasting results including the mean
and variance of the distribution, as illustrated in Eq. (10) and
(11). In Eq. (11), the softplus function guarantees that the
variance is always positive.

4 = linear(hy)) (10)

02 = softplus(linear(hy)) (11)
=log(1 + exp(linear(ilt)))

Eq. (10) and (11) form the Gaussian distribution N (3¢, 02),
and predictions could be sampled from the distribution. The
p-quantile output are generated via the inverse cumulative
probability distribution: g, = F; *(p).

Loss Function. Finally, the parameters of TCAN are op-
timised by minimising the loss function shown in Eq. (12)
below, where ; is the point forecast. To provide both accurate
point and probabilistic forecasts, it combines the Mean Ab-
solute Error (MAE) and the Negative Log-Likelihood (NLL)
using the regularization parameter a. Higher a increases the
weight of the probabilistic forecast; we used a = 0.5.

N 2
L(§7,41:1, Olpyi1rr YT+ 1T a)
N 2
=ax NLL(yTl+1:T7UITL+1;T7yTl+1:T)

+ MAE@TZ+1:T7 yTz+1iT>

a . 2 (12)
== 57 % (Th log(2m) + Z log |07, |
h t=Ti+1
T ;I
+ Z (yr — Z)t)QOI_tQ) +o Z [yt — Gt
t=T;+1 h t=T;+1

In summary, the information flow in TCAN includes several
temporal convolution layers, a sparse attention layer and an
output layer; the network is trained end-to-end optimizing the
loss function from Eq. (12).

V. EXPERIMENTAL SETUP
A. Methods Used for Comparison

We compare the performance of TCAN with five state-
of-the-art deep learning models (DeepAR, N-BEATS-G, N-
BEATS-I, LogSparse Transformer and TCNN) and a persis-
tence model.

o DeepAR [4] is a widely used sequence-to-sequence prob-

abilistic forecasting model.

e« N-BEATS [2] is based on backward and forward residual
links and stacks of fully connected layers. N-BEATS-G
provides generic forecasting results, while N-BEATS-I
provides interpretable results by decomposing the time
series into trend and seasonality. We introduced covariates
to N-BEATS at the input of each block to facilitate
multivariate series forecasting.

o LogSparse Transformer [5] is a recently proposed vari-
ation of the Transformer architecture for time series
forecasting. It is denoted as LS Transformer” in Table
1L

¢ TCNN [8]-[10] is a novel convolutional architecture and
has been successfully applied to solar power forecasting
[8]. As we consider probabilistic forecasts, we selected
the autoregressive probabilistic TCNN from [10] for the
comparison and used a fixed length input sequence.
TCNN-3 and TCNN-4 correspond to TCNN with 3 and
4 temporal convolutional layers respectively.

« Persistence is a typical baseline in forecasting. It consid-
ers the time series of the previous day as the prediction
for the next day.
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Fig. 4. Partial autocorrelation for (a) Sanyo, (b) Hanergy and (c) Solar.

B. Data Split and Hyperparameter Tuning

All models were implemented with PyTorch 1.6 on Tesla
P100 16GB GPU under Linux environment. The deep learning
models were optimized by mini-batch gradient descent with
the Adam optimizer and a maximum number of epochs 200.
We used Bayesian optimization for hyperparameter search
with a maximum number of iterations of 20. The models used
for comparison were tuned based on the recommendations of
the authors in the papers. The hyperparameters which have
obtained a minimum loss on the validation set were selected
and used to evaluate the performance on the test set.

Following the experimental setup in [14] and [5], we used
the following training, validation and test split: for Sanyo and
Hanergy - the data from the last year as test set, the second
last year as validation set for early stopping and the remaining
data (5 years for Sanyo and 4 years for Hanergy) as training
set; for Solar - the last week data as test set (from 25/08/2006),
the week before as validation set. For all data sets, the data
preceding the validation set is split in the same way into three
subsets and the corresponding validation set is used to select
the best hyperparameters.

For TCAN, the learning rate )\ is fixed to 0.005 for all data
sets, the batch size npgecn, 1S 256 for Sanyo set and 512 for
Hanergy and Solar sets, the regularization parameter a and
the entmax attention « are set to 0.5 and 1.5 respectively, the
dropout rate ¢ is chosen from {0, 0.1, 0.2} and the kernel
size dj, from {3, 4}; the convolutional layer size dj;q and the
number of convolutional layers are chosen from the descent-
sorted permutations of {20, 16, 12, 8, 6, 4} and {2, 3}.

For TCNN, all settings are the same as for TCAN except
that we consider both TCNN with 3 and 4 convolutional layers
to allow for comparable receptive fields with TCAN. The
selected best hyperparameters for TCAN and TCNNs with 3
(TCNN-3) and 4 (TCNN-4) layers are listed in Table I and
used for the evaluation on the test set.

C. Evaluation Measures

Following [4], [23], we report the standard p0.5 and p0.9-
quantile losses. Note that p0.5 is equivalent to the Mean
Absolute Percentage Error (MAPE) [24]. Given the ground
truth y and p-quantile of the predicted distribution g, the p-

TABLE I
HYPERPARAMETERS FOR TCAN AND TCNN
| o dhiq di
TCNN-3: Sanyo 0.1 [20,16,8] 3
Hanergy 0.1 [16,12,6] 3
Solar 0.1 [16,12,8] 3
TCNN-4: Sanyo 0.2 [20,16,12,8] 3
Hanergy 0.1 [12,8,6,4] 3
Solar 0.1 [16,12,8,6] 3
TCAN: Sanyo 0.1 [12,6] 2
Hanergy 0.1 [12,8,4] 3
Solar 0.1 [12,6,4] 3
TABLE II

ACCURACY RESULTS - p0.5/p0.9-LOSS. ¢ DENOTES RESULTS FROM [5].

Sanyo Hanery Solar
Persistence 0.154/- 0.242/- 0.256/-
DeepAR 0.070/0.031 0.092/0.045 0.222°/0.093°
LS Transformer 0.067/0.036 0.124/0.066 0.210°/0.082°
N-BEATS-I 0.091/- 0.154/- 0.215/-
N-BEATS-G 0.077/- 0.132/- 0.212/-
TCNN-3 0.066/0.032 0.088/0.045 0.230/0.088
TCNN-4 0.069/0.031 0.078/0.041 0.222/0.080
TCAN 0.062/0.031 0.068/0.035 0.209/0.081
quantile loss is given by:
. _2XZth(ytayt)
QLp (y7 y) -
> 1yl (13)
P(y.i) = Py — 1) ify>g
PAD (1—-p)(g—y) otherwise

VI. RESULTS AND DISCUSSION

The p0.5 and p0.9-losses are shown in Table II. Since N-
BEATS and Persistence do not produce probabilistic forecasts,
only the p0.5-loss (equivalent to MAE) is reported for them.

Overall, the most accurate model is TCAN - it outperforms
all other methods for both point (p0.5) and probabilistic
(p0.9) forecasts on all datasets except for one case - p0.9
for Solar, where it is ranked second after TCNN-4. For
the point forecasts, the second-best performing model is
LogSparse Transformer, followed by TCNN-4 and TCNN-
3 (equal rank), then DeepAR, N-BEATS-G, N-BEATS-I and
finally Persistence. For the probabilistic forecasts, TCAN and
TCNN-4 are equally first, followed by TCNN-3, DeepAR and
LogSparse Transformer. Hence, overall TCNN-4 is the second-
best performing model.
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Fig. 5. TCAN case study: (1) actual vs predicted values and (2) attention map for two samples from each dataset. First, second and third rows correspond

to the Sanyo, Hanergy and Solar datasets respectively.

By comparing the two TCNN models, we can see that
TCNN-4 outperformed TCNN-3 for both point and probabilis-
tic forecasts on all datasets except for Sanyo for p0.5. While
the receptive field of TCNN-4 is able to cover all values from
the input sequence (20 for Sanyo and Hanergy and 24 for
Solar), the receptive field of TCNN-3 covers only 14 steps.
This shows that enabling a larger receptive field in TCNN-4
was beneficial.

TCAN is more accurate than both TCNN-4 and TCNN-3
which shows the effectiveness of the sparse attention mecha-
nism for improving accuracy and extending the receptive field
without adding more convolutional layers. The receptive fields
of both TCAN and TCNN-4 can cover all values from the input
sequence but TCAN uses a smaller number of convolutional
layers than TCNN-4.

Fig. 5 illustrates TCAN’s forecasting results for two con-
secutive days from the test set of each dataset - (i) actual vs
predicted values for each day and (ii) the corresponding sparse
attention map. The attention map shows the pair attention
scores which represent the importance of the previous time
series steps (y-axis) in predicting the future steps (x-axis).
The plots show that TCAN is able to model the solar power
series accurately, and the attention maps show that: 1) the
dependency between future and past steps is sparse and 2)

accessing longer previous history is important. For example,
all maps show high attention scores for some early time steps.
Fig. 5 (d) shows an extreme case - the first future prediction
is determined by the second input step only.

The attention-map visualization is useful to understand the
importance of the input features for each instance and can be
used for explanation and justification of decisions to increase
trust in the system in practical applications.

We also compare the training speed of TCAN and TCNN-
4; both models can cover all input steps via their receptive
fields. Both are trained on the same device, and the average
elapsed time per batch and standard deviation are reported
in Fig. 6. TCAN is considerably faster than TCNN-4 on all
datasets because it has fewer temporal convolutional layers
and trainable parameters.

Overall, the superior performance of TCAN indicates its
effectiveness for capturing sparse dependency between future
and past steps and enabling an extended receptive field without
a deep architecture. TCAN also provides explainable results by
showing which timesteps are most important for the prediction.

VII. CONCLUSION

In this work, we present TCAN, a new approach for
time series forecasting. TCAN employs multiple temporal
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Fig. 6. Comparison of training time of TCAN and TCNN

convolutional layers to learn temporal patterns and a sparse
attention layer to enable an extended receptive field without
adding more layers. The sparse attention layer uses the latent
factors generated by the temporal convolutional layers and
identifies the important time steps to produce the attention
vectors for the output layer and compute the final forecasts.
The performance of TCAN is evaluated on three solar power
data sets as a case study. The results show that TCAN out-
performs the state-of-the-art deep learning models DeepAR,
LogSparse Transformer, N-BEATS and TCNN and a persistent
baseline in terms of accuracy. TCAN requires less number of
convolutional layers than TCNN to cover the input sequence
and is also much faster to train. The sparse attention maps
facilitate understanding and interpretability of the results by
showing the most relevant timesteps for the prediction of each
instance.

In future work, we will investigate (1) the importance of
the input time steps identified by the attention mechanism and
the covariates to further improve interpretability, and (2) the
application of TCAN to other time series forecasting tasks.
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